VPython Class 2: Functions, Fields, and the dreaded ˆr

Size: px
Start display at page:

Download "VPython Class 2: Functions, Fields, and the dreaded ˆr"

Transcription

1 Physics 212E Classical and Modern Physics Spring Introduction VPython Class 2: Functions, Fields, and the dreaded ˆr In our study of electric fields, we start with a single point charge source q source located at some position r source, and we want to know the field created by this source at some observation point r obs. The relationship between the vectors is illustrated in Fig. 1. Note that this figure uses the conventions for axis labeling that is consistent with that of the default view in VPython; in many textbooks, the default view has z going up the page, y to the right, and x coming out of the page. The vector displacement between the source and the observation point is given by Coulomb s law then gives the field at r obs due to the source at r source : r r obs r source. (1) F E = kq ˆr, (2) r2 where ˆr is the unit vector in the direction of ˆr. Your first task will be to write a Python script that will display a point charge at some position r source along with an arrow representing the electric field at some other point r obs. As a specific simple, consider a point charge q source = 3 C on the x-axis with coordinates (3,0,0), and suppose I ask for the field at position with coordinates (3,2,0). Your Python script should display something like Fig. 2, with an an arrow with its tail at the observation point, pointing away from the source, and a length proportional to kq source /r 2 = k3/2 2 = 3k/4 (except your output will be much prettier, and you will be able change your perspective, and zoom in and out). In this exercise we will set k = 1. y ˆr observation point r obs r = r obs r source q source r source x z Figure 1: Vectors associated with the positions of a point charge source and the observation point for an electric field. 1

2 y E = 3k 4 ĵ observation point x z q source Figure 2: Example output. A source charge is located on the x-axis with coordinates (2,0,0), and we show the field vector E with its tail at the observation point with coordinates (2,3,0). 2. Getting Started Reminder: All Programs Python 3.2 IDLE (Python GUI) From the Python shell, select File New Window Now you ve got the IDLE window in which we ll write our scripts. The first line of your program will always (unless otherwise stated) be: from visual import * 3. Python Jargon: Objects and Attributes Before starting on the ultimate task of displaying field vectors, lets review some commands we used last time and learn how to extend them, while introducing some of the language of Python. The command particle = sphere(pos=vector(0,0,0),radius=0.5,color=color.red) creates a sphere object (or equivalently, an object in the sphere class) whose name is particle. We could give it any name we want (e.g., Fred or Ginger). The name is used as a way to identify the object that we just created, and we can create other objects in the same class class with other names. In creating the sphere above, we ve given it certain attributes, namely a position, a radius, and a color. The visual module automatically knows what to do with these attributes in this case, draw the sphere centered at the given position, with the given radius and color. We can also add other attributes to the object by hand, and call them whatever we want. For example: particle.vel = vector(0, 1, -2) 2

3 adds a vector property of velocity (vel) to the sphere object named particle. This is merely a convenient way for us to keep track of the velocity of this object. The computer doesn t automatically ascribe any special meaning to this attribute; (for example, it doesn t actually affect the speed of the particle in an animation); we have to do that by hand. We could also add this property to the object when we first define it, i.e., particle = sphere(pos=vector(0,0,0),vel=vector(0,1,-2),radius=0.5, color=color.red) Now try the following (one line at a time): print(particle.vel) print(particle.vel.x) print(particle.vel.y) print(particle.vel.z) print(particle.vel+7) print(particle.vel.x+7) If any statements give you errors, try to explain what s wrong with them before deleting them. Since we are eventually going to study the motion of charged particles in electric and magnetic fields, we will need include mass and charge as attributes of some of our objects. Again, we can add them after particle has been defined, using particle.mass = 1 particle.charge = 2 or we can add these attributes to the list when particle is defined. 4. The ˆr vector Now let s get down to the business of calculating and displaying field vectors. We ll start in this section by displaying ˆr vectors. From IDLE, open the file background.py that you can find in the PHYS 211E folder in our departmental public netspace. Save this with a new name in your space. Run this script, and you should see transparent x-y, x-z, and y-z planes that intersect at the origin, along with axis labels. The displayed plane sections are all in VPython units. There is no fancy programming here I m just trying to save you some typing. You do not have to use this file as your starting point, but something like this helps me situate the objects we will be displaying in a Cartesian coordinate space. In the rest of this section I m not going to give you explicit commands to type. Rather, I would like you to try to use resources at your disposal, including the handout for VPython Class #1, any scripts you wrote last week, the Help in IDLE, or the online information at contents/docs/primitives.html. None of this should take much time. If you get bogged down, just ask, and I ll give you much more explicit instructions. Create a sphere object at the origin representing a source charge with q = +4. Let s all agree to give this sphere object the name source. 3

4 The source object has several attributes. Which of these attributes corresponds to the vector r source? Put a temporary print statement into your script to check and make sure that you know how to get the vector r source in terms of your Python variables. (Hint: source is not itself equal to r source.) Define a observation point at (2,0,0) as a Python vector with the name obs. This observation point serves as r obs. (There is no real need to define this as a sphere object; it s just a point, with no radius, color, or charge attributes. But if you want to display it with a colored sphere, that s ok.) Determine a Python expression for the vector r in terms of your source and obs; I suggest calling this r. Determine a Python expression for the vector ˆr in terms of your source and obs; I suggest calling this rhat. Have VPython draw an arrow object at the position obs that represents ˆr. (I use the attribute shaftwidth=0.1). Do you get the arrow you expect? Change your observation point. Does the arrow representing ˆr change appropriately? Change the position of your source charge. Does the arrow representing ˆr change appropriately? 5. Visualizing electric field vectors Modify your previous work so that your script gives the field vector at your observation point. (You may set k = 1.) If you use the previously defined r and rhat it should take a very modest modification to go from an arrow representing ˆr to an arrow representing E. When you have this working, check the effect of varying: the source charge (magnitude and sign), the position of the source charge, and the observation point. Does the the displayed field vector change appropriately? 6. Python functions A Python function is a lot like a math function it takes one or more inputs called arguments, does something with them, and typically gives an output. In your IDLE editor define a function as follows: def myfunction(r): # lots of calculations could go here return 6*r print( myfunction(2) ) 4

5 Look in the Python shell window (where print results always go). Now try x=7 r=4 print( myfunction(x) ) Is the result what you expected? Explain in your own words what the role of the variable r is in the function. There s more than meets the eye with this function. We didn t tell the function what type of variable r was. Let s make a vector: v = vector(1,2,0) print( myfunction(v) ) Now look at the output. The function myfunction will return a number when the argument r is a number, but it returns a vector when the argument is a vector. This is allowed as long as the operations make sense (and is called dynamic typing). It is one of many ways that Python makes programming easier. Just for fun, see what Python does when you use the character "a" as the input to your function: print( myfunction("a") ) Delete these examples from your IDLE window and then define a function that returns the electric field at an observation point due to a given source charge. This shouldn t involve much more than cutting and pasting existing code. You function should look something like this: def e(obs,source): #your instructions here return... Check to make sure that your function gives the right vectors. 7. The electric field from multiple sources Now consider two charges, illustrated in Fig. 3, like those we studied on the second day of class. Use your electric field function to display the total field vector at the point (2,0,0). Check the field vector at some other points, like (4,0,0), (0,2,0), (0,-2,0), q 1 = q 2 = 10 Figure 3: Two charges 5

6 8. Submit your work Make sure to submit your work to my dropbox in facultystaff/m/mligare with the filename vp02_lastname.py when you re done. 9. Extras Reconsider the two charge example, and bump up the charges to ±20. Now create field vectors at 16 equally spaced points around a circle of radius 4. Then add field vectors at equally spaced points around a circle of radius 6. Think about the field lines that would represent the same vector field. Generalize the two charge example to situations in which there are many more sources. What features of Python will make this an easy task. Think about ways in which you might numerically approximate an integral for an line of charge.... 6

Computer Model of Spring-Mass System. Q1: Can a computer model of a mass-spring system, based on the finite-time form of the momentum principle

Computer Model of Spring-Mass System. Q1: Can a computer model of a mass-spring system, based on the finite-time form of the momentum principle QUESTIONS: Parts I, II (this week s activity): Computer Model of Spring-Mass System Q1: Can a computer model of a mass-spring system, based on the finite-time form of the momentum principle and using your

More information

1 Newton s 2nd and 3rd Laws

1 Newton s 2nd and 3rd Laws Physics 13 - Winter 2007 Lab 2 Instructions 1 Newton s 2nd and 3rd Laws 1. Work through the tutorial called Newton s Second and Third Laws on pages 31-34 in the UW Tutorials in Introductory Physics workbook.

More information

Math Lab 8: Electric Fields Integrating Continuous Charge Distributions II Due noon Thu. Feb. 1 in class

Math Lab 8: Electric Fields Integrating Continuous Charge Distributions II Due noon Thu. Feb. 1 in class Matter & Motion Winter 2017 18 Name: Math Lab 8: Electric Fields Integrating Continuous Charge Distributions II Due noon Thu. Feb. 1 in class Goals: 1. Learn to use Mathematica to plot functions and to

More information

Union College Winter 2013

Union College Winter 2013 Union College Winter 2013 Physics 121 Lab #4: Numerical Calculations of the Magnetic Field from a Moving Charge In Lab #3 you gained a little experience about using computers to calculate the electric

More information

Calculating and displaying the magnetic field of a single moving charged particle

Calculating and displaying the magnetic field of a single moving charged particle 1 Introduction Calculating displaying the magnetic of a single moving charged particle A proton moves with a constant Calculating Calculating velocity of 4 10 displaying displaying 4 m/s in the the the

More information

Math Lab 10: Differential Equations and Direction Fields Complete before class Wed. Feb. 28; Due noon Thu. Mar. 1 in class

Math Lab 10: Differential Equations and Direction Fields Complete before class Wed. Feb. 28; Due noon Thu. Mar. 1 in class Matter & Motion Winter 2017 18 Name: Math Lab 10: Differential Equations and Direction Fields Complete before class Wed. Feb. 28; Due noon Thu. Mar. 1 in class Goals: 1. Gain exposure to terminology and

More information

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations

Lab 2 Worksheet. Problems. Problem 1: Geometry and Linear Equations Lab 2 Worksheet Problems Problem : Geometry and Linear Equations Linear algebra is, first and foremost, the study of systems of linear equations. You are going to encounter linear systems frequently in

More information

Calculations to predict motion or move objects (done repetitively in a loop)

Calculations to predict motion or move objects (done repetitively in a loop) Lab 2: Free Fall 1 Modeling Free Fall Now that you ve done experimental measurements of an object in free fall, you will model the motion of an object in free fall using numerical methods and compare your

More information

CS1110 Lab 3 (Feb 10-11, 2015)

CS1110 Lab 3 (Feb 10-11, 2015) CS1110 Lab 3 (Feb 10-11, 2015) First Name: Last Name: NetID: The lab assignments are very important and you must have a CS 1110 course consultant tell CMS that you did the work. (Correctness does not matter.)

More information

Exploring Graphs of Polynomial Functions

Exploring Graphs of Polynomial Functions Name Period Exploring Graphs of Polynomial Functions Instructions: You will be responsible for completing this packet by the end of the period. You will have to read instructions for this activity. Please

More information

Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014)

Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014) Relative Photometry with data from the Peter van de Kamp Observatory D. Cohen and E. Jensen (v.1.0 October 19, 2014) Context This document assumes familiarity with Image reduction and analysis at the Peter

More information

Computer Model of Spring-Mass System, Part 3 of Springs Lab

Computer Model of Spring-Mass System, Part 3 of Springs Lab Computer Model of Spring-Mass System, Part 3 of Springs Lab QUESTIONS: Modeling the real world: Q1: Can a computer program of a mass-spring system, based on the finite-time form of the momentum principle

More information

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data

HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Jason Kendall, William Paterson University, Department of Physics HR Diagram of Globular Cluster Messier 80 Using Hubble Space Telescope Data Background Purpose: HR Diagrams are central to understanding

More information

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become

More information

#29: Logarithm review May 16, 2009

#29: Logarithm review May 16, 2009 #29: Logarithm review May 16, 2009 This week we re going to spend some time reviewing. I say re- view since you ve probably seen them before in theory, but if my experience is any guide, it s quite likely

More information

The Monte Carlo Method

The Monte Carlo Method ORBITAL.EXE Page 1 of 9 ORBITAL.EXE is a Visual Basic 3.0 program that runs under Microsoft Windows 9x. It allows students and presenters to produce probability-based three-dimensional representations

More information

Overview In chapter 16 you learned how to calculate the Electric field from continuous distributions of charge; you follow four basic steps.

Overview In chapter 16 you learned how to calculate the Electric field from continuous distributions of charge; you follow four basic steps. Materials: whiteboards, computers with VPython Objectives In this lab you will do the following: Computationally model the electric field of a uniformly charged rod Computationally model the electric field

More information

Matter & Interactions I Fall 2016

Matter & Interactions I Fall 2016 33-151 Matter & Interactions I Fall 2016 Name (Printed) Instructor Signature for 9.P70 (a): Instructor Signature for 9.P70 (b): Instructor Signature for 9.P70 (c): Instructor Signature for 9.P71: Due Date:

More information

Sums of Squares (FNS 195-S) Fall 2014

Sums of Squares (FNS 195-S) Fall 2014 Sums of Squares (FNS 195-S) Fall 014 Record of What We Did Drew Armstrong Vectors When we tried to apply Cartesian coordinates in 3 dimensions we ran into some difficulty tryiing to describe lines and

More information

Vectors. Vector Practice Problems: Odd-numbered problems from

Vectors. Vector Practice Problems: Odd-numbered problems from Vectors Vector Practice Problems: Odd-numbered problems from 3.1-3.21 After today, you should be able to: Understand vector notation Use basic trigonometry in order to find the x and y components of a

More information

LAB Exercise #4 - Answers The Traction Vector and Stress Tensor. Introduction. Format of lab. Preparation reading

LAB Exercise #4 - Answers The Traction Vector and Stress Tensor. Introduction. Format of lab. Preparation reading LAB Exercise #4 - Answers The Traction Vector and Stress Tensor Due: Thursday, 26 February 2009 (Special Thanks to D.D. Pollard who pioneered this exercise in 1991) Introduction Stress concentrations in

More information

Physics 212E Spring 2004 Classical and Modern Physics. Computer Exercise #2

Physics 212E Spring 2004 Classical and Modern Physics. Computer Exercise #2 Physics 212E Spring 2004 Classical and Modern Physics Chowdary Computer Exercise #2 Launch Mathematica by clicking on the Start menu (lower left hand corner of the screen); from there go up to Science

More information

Solve Systems of Equations Algebraically

Solve Systems of Equations Algebraically Part 1: Introduction Solve Systems of Equations Algebraically Develop Skills and Strategies CCSS 8.EE.C.8b You know that solutions to systems of linear equations can be shown in graphs. Now you will learn

More information

Data Structures & Database Queries in GIS

Data Structures & Database Queries in GIS Data Structures & Database Queries in GIS Objective In this lab we will show you how to use ArcGIS for analysis of digital elevation models (DEM s), in relationship to Rocky Mountain bighorn sheep (Ovis

More information

Making Measurements. On a piece of scrap paper, write down an appropriate reading for the length of the blue rectangle shown below: (then continue )

Making Measurements. On a piece of scrap paper, write down an appropriate reading for the length of the blue rectangle shown below: (then continue ) On a piece of scrap paper, write down an appropriate reading for the length of the blue rectangle shown below: (then continue ) 0 1 2 3 4 5 cm If the measurement you made was 3.7 cm (or 3.6 cm or 3.8 cm),

More information

Tutorial Three: Loops and Conditionals

Tutorial Three: Loops and Conditionals Tutorial Three: Loops and Conditionals Imad Pasha Chris Agostino February 18, 2015 1 Introduction In lecture Monday we learned that combinations of conditionals and loops could make our code much more

More information

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM

CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM Name Partner(s) Section Date CHARTING THE HEAVENS USING A VIRTUAL PLANETARIUM You have had the opportunity to look at two different tools to display the night sky, the celestial sphere and the star chart.

More information

Tutorial 8 Raster Data Analysis

Tutorial 8 Raster Data Analysis Objectives Tutorial 8 Raster Data Analysis This tutorial is designed to introduce you to a basic set of raster-based analyses including: 1. Displaying Digital Elevation Model (DEM) 2. Slope calculations

More information

Your Second Physics Simulation: A Mass on a Spring

Your Second Physics Simulation: A Mass on a Spring Your Second Physics Simulation: A Mass on a Spring I. INTRODUCTION At this point I think everybody has a working bouncing ball program. In these programs the ball moves under the influence of a very simple

More information

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions

Math 308 Midterm Answers and Comments July 18, Part A. Short answer questions Math 308 Midterm Answers and Comments July 18, 2011 Part A. Short answer questions (1) Compute the determinant of the matrix a 3 3 1 1 2. 1 a 3 The determinant is 2a 2 12. Comments: Everyone seemed to

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will solve linear equations in one variable graphically and algebraically. Students will explore what it means for an equation to be balanced both graphically and algebraically.

More information

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books.

Vectors. A vector is usually denoted in bold, like vector a, or sometimes it is denoted a, or many other deviations exist in various text books. Vectors A Vector has Two properties Magnitude and Direction. That s a weirder concept than you think. A Vector does not necessarily start at a given point, but can float about, but still be the SAME vector.

More information

Lab Exercise 03: Gauss Law

Lab Exercise 03: Gauss Law PHYS 2212 Lab Exercise 03: Gauss Law PRELIMINARY MATERIAL TO BE READ BEFORE LAB PERIOD Counting Field Lines: Electric Flux Recall that an electric field (or, for that matter, magnetic field) can be difficult

More information

Lab 1: Empirical Energy Methods Due: 2/14/18

Lab 1: Empirical Energy Methods Due: 2/14/18 Lab 1: Empirical Energy Methods Due: 2/14/18 General remarks on scientific scripting Scientific scripting for managing the input and output data is an important component of modern materials computations,

More information

How to write maths (well)

How to write maths (well) How to write maths (well) Dr Euan Spence 29 September 2017 These are the slides from a talk I gave to the new first-year students at Bath, annotated with some of the things I said (which appear in boxes

More information

LINEAR ALGEBRA KNOWLEDGE SURVEY

LINEAR ALGEBRA KNOWLEDGE SURVEY LINEAR ALGEBRA KNOWLEDGE SURVEY Instructions: This is a Knowledge Survey. For this assignment, I am only interested in your level of confidence about your ability to do the tasks on the following pages.

More information

Lesson 3-1: Solving Linear Systems by Graphing

Lesson 3-1: Solving Linear Systems by Graphing For the past several weeks we ve been working with linear equations. We ve learned how to graph them and the three main forms they can take. Today we re going to begin considering what happens when we

More information

Create Satellite Image, Draw Maps

Create Satellite Image, Draw Maps Create Satellite Image, Draw Maps 1. The goal Using Google Earth, we want to create and import a background file into our Adviser program. From there, we will be creating paddock boundaries. The accuracy

More information

Modeling the Motion of a Projectile in Air

Modeling the Motion of a Projectile in Air In this lab, you will do the following: Modeling the Motion of a Projectile in Air analyze the motion of an object fired from a cannon using two different fundamental physics principles: the momentum principle

More information

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design

CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design CE 365K Exercise 1: GIS Basemap for Design Project Spring 2014 Hydraulic Engineering Design The purpose of this exercise is for you to construct a basemap in ArcGIS for your design project. You may execute

More information

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers.

2.1 Definition. Let n be a positive integer. An n-dimensional vector is an ordered list of n real numbers. 2 VECTORS, POINTS, and LINEAR ALGEBRA. At first glance, vectors seem to be very simple. It is easy enough to draw vector arrows, and the operations (vector addition, dot product, etc.) are also easy to

More information

A GUI FOR EVOLVE ZAMS

A GUI FOR EVOLVE ZAMS A GUI FOR EVOLVE ZAMS D. R. Schlegel Computer Science Department Here the early work on a new user interface for the Evolve ZAMS stellar evolution code is presented. The initial goal of this project is

More information

Projects in Geometry for High School Students

Projects in Geometry for High School Students Projects in Geometry for High School Students Goal: Our goal in more detail will be expressed on the next page. Our journey will force us to understand plane and three-dimensional geometry. We will take

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

Exercises for Windows

Exercises for Windows Exercises for Windows CAChe User Interface for Windows Select tool Application window Document window (workspace) Style bar Tool palette Select entire molecule Select Similar Group Select Atom tool Rotate

More information

THAT KEEP ESCAPING THE CASE OF THE CENTIGURPS THAT KEEP ESCAPING. 10s THAT KEEP ESCAPING THAT KEEP ESCAPING. THE CASE OF The CENTIGURPS

THAT KEEP ESCAPING THE CASE OF THE CENTIGURPS THAT KEEP ESCAPING. 10s THAT KEEP ESCAPING THAT KEEP ESCAPING. THE CASE OF The CENTIGURPS 4 5 Tape this flap under the other marker to connect the two. Tape the other marker to the backside of this marker. Create a Centigurps Counter from 0-100. Cut out the Centigurps Counter halves to the

More information

You will be writing code in the Python programming language, which you may have learnt in the Python module.

You will be writing code in the Python programming language, which you may have learnt in the Python module. Weather Logger Introduction: In this project you will collect data from the Sense HAT s sensors and log it to a file. Then you will use the PyGal module to display that data as a line graph. You will be

More information

Calculating Bond Enthalpies of the Hydrides

Calculating Bond Enthalpies of the Hydrides Proposed Exercise for the General Chemistry Section of the Teaching with Cache Workbook: Calculating Bond Enthalpies of the Hydrides Contributed by James Foresman, Rachel Fogle, and Jeremy Beck, York College

More information

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1

Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 Alex s Guide to Word Problems and Linear Equations Following Glencoe Algebra 1 What is a linear equation? It sounds fancy, but linear equation means the same thing as a line. In other words, it s an equation

More information

GMS 8.0 Tutorial MT3DMS Advanced Transport MT3DMS dispersion, sorption, and dual domain options

GMS 8.0 Tutorial MT3DMS Advanced Transport MT3DMS dispersion, sorption, and dual domain options v. 8.0 GMS 8.0 Tutorial MT3DMS dispersion, sorption, and dual domain options Objectives Learn about the dispersion, sorption, and dual domain options in MT3DMS Prerequisite Tutorials None Required Components

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Lesson 5b Solving Quadratic Equations

Lesson 5b Solving Quadratic Equations Lesson 5b Solving Quadratic Equations In this lesson, we will continue our work with Quadratics in this lesson and will learn several methods for solving quadratic equations. The first section will introduce

More information

Electric Fields and Equipotentials

Electric Fields and Equipotentials OBJECTIVE Electric Fields and Equipotentials To study and describe the two-dimensional electric field. To map the location of the equipotential surfaces around charged electrodes. To study the relationship

More information

Main topics for the First Midterm Exam

Main topics for the First Midterm Exam Main topics for the First Midterm Exam The final will cover Sections.-.0, 2.-2.5, and 4.. This is roughly the material from first three homeworks and three quizzes, in addition to the lecture on Monday,

More information

Nondeterministic finite automata

Nondeterministic finite automata Lecture 3 Nondeterministic finite automata This lecture is focused on the nondeterministic finite automata (NFA) model and its relationship to the DFA model. Nondeterminism is an important concept in the

More information

Math 300 Introduction to Mathematical Reasoning Autumn 2017 Inverse Functions

Math 300 Introduction to Mathematical Reasoning Autumn 2017 Inverse Functions Math 300 Introduction to Mathematical Reasoning Autumn 2017 Inverse Functions Please read this pdf in place of Section 6.5 in the text. The text uses the term inverse of a function and the notation f 1

More information

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 2. Due: Thursday, 4/19/09

Department of Chemical Engineering University of California, Santa Barbara Spring Exercise 2. Due: Thursday, 4/19/09 Department of Chemical Engineering ChE 210D University of California, Santa Barbara Spring 2012 Exercise 2 Due: Thursday, 4/19/09 Objective: To learn how to compile Fortran libraries for Python, and to

More information

#26: Number Theory, Part I: Divisibility

#26: Number Theory, Part I: Divisibility #26: Number Theory, Part I: Divisibility and Primality April 25, 2009 This week, we will spend some time studying the basics of number theory, which is essentially the study of the natural numbers (0,

More information

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2

Final Review Sheet. B = (1, 1 + 3x, 1 + x 2 ) then 2 + 3x + 6x 2 Final Review Sheet The final will cover Sections Chapters 1,2,3 and 4, as well as sections 5.1-5.4, 6.1-6.2 and 7.1-7.3 from chapters 5,6 and 7. This is essentially all material covered this term. Watch

More information

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999

Worksheet on Derivatives. Dave L. Renfro Drake University November 1, 1999 Worksheet on Derivatives Dave L. Renfro Drake University November, 999 A. Fun With d d (n ) = n n : Find y In case you re interested, the rimary urose of these roblems (Section A) is to review roerties

More information

Voting Systems. High School Circle II. June 4, 2017

Voting Systems. High School Circle II. June 4, 2017 Voting Systems High School Circle II June 4, 2017 Today we are going to resume what we started last week. We are going to talk more about voting systems, are we are going to being our discussion by watching

More information

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011

Math 31 Lesson Plan. Day 2: Sets; Binary Operations. Elizabeth Gillaspy. September 23, 2011 Math 31 Lesson Plan Day 2: Sets; Binary Operations Elizabeth Gillaspy September 23, 2011 Supplies needed: 30 worksheets. Scratch paper? Sign in sheet Goals for myself: Tell them what you re going to tell

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

Star Cluster Photometry and the H-R Diagram

Star Cluster Photometry and the H-R Diagram Star Cluster Photometry and the H-R Diagram Contents Introduction Star Cluster Photometry... 1 Downloads... 1 Part 1: Measuring Star Magnitudes... 2 Part 2: Plotting the Stars on a Colour-Magnitude (H-R)

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

Project 2: Using linear systems for numerical solution of boundary value problems

Project 2: Using linear systems for numerical solution of boundary value problems LINEAR ALGEBRA, MATH 124 Instructor: Dr. T.I. Lakoba Project 2: Using linear systems for numerical solution of boundary value problems Goal Introduce one of the most important applications of Linear Algebra

More information

Lab 4: Gauss Gun Conservation of Energy

Lab 4: Gauss Gun Conservation of Energy Lab 4: Gauss Gun Conservation of Energy Before coming to Lab Read the lab handout Complete the pre-lab assignment and hand in at the beginning of your lab section. The pre-lab is written into this weeks

More information

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations Student Instruction Sheet: Unit 3, Lesson 3 Solving Quadratic Relations Suggested Time: 75 minutes What s important in this lesson: In this lesson, you will learn how to solve a variety of quadratic relations.

More information

PHY2048 Physics with Calculus I

PHY2048 Physics with Calculus I PHY2048 Physics with Calculus I Section 584761 Prof. Douglas H. Laurence Exam 1 (Chapters 2 6) February 14, 2018 Name: Solutions 1 Instructions: This exam is composed of 10 multiple choice questions and

More information

Math (P)Review Part I:

Math (P)Review Part I: Lecture 1: Math (P)Review Part I: Linear Algebra Computer Graphics CMU 15-462/15-662, Fall 2017 Homework 0.0 (Due Monday!) Exercises will be a bit harder / more rigorous than what you will do for the rest

More information

2.5 The Fundamental Theorem of Algebra.

2.5 The Fundamental Theorem of Algebra. 2.5. THE FUNDAMENTAL THEOREM OF ALGEBRA. 79 2.5 The Fundamental Theorem of Algebra. We ve seen formulas for the (complex) roots of quadratic, cubic and quartic polynomials. It is then reasonable to ask:

More information

Students will explore Stellarium, an open-source planetarium and astronomical visualization software.

Students will explore Stellarium, an open-source planetarium and astronomical visualization software. page 22 STELLARIUM* OBJECTIVE: Students will explore, an open-source planetarium and astronomical visualization software. BACKGROUND & ACKNOWLEDGEMENTS This lab was generously provided by the Red Rocks

More information

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth

Lesson Plan 2 - Middle and High School Land Use and Land Cover Introduction. Understanding Land Use and Land Cover using Google Earth Understanding Land Use and Land Cover using Google Earth Image an image is a representation of reality. It can be a sketch, a painting, a photograph, or some other graphic representation such as satellite

More information

Conformational Analysis of n-butane

Conformational Analysis of n-butane Conformational Analysis of n-butane In this exercise you will calculate the Molecular Mechanics (MM) single point energy of butane in various conformations with respect to internal rotation around the

More information

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group.

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group. 65 Name Date Partners 1. The statement of Gauss' Law: Lab 4 - GAUSS' LAW On all questions, work together as a group. (a) in words: The electric flux through a closed surface is equal to the total charge

More information

6. How Functions Work and Are Accessed. Topics: Modules and Functions More on Importing Call Frames

6. How Functions Work and Are Accessed. Topics: Modules and Functions More on Importing Call Frames 6. How Functions Work and Are Accessed Topics: Modules and Functions More on Importing Call Frames Let s Talk About Modules What Are They? M1.py A module is a.py file that contains Python code The name

More information

Lesson 3: Advanced Factoring Strategies for Quadratic Expressions

Lesson 3: Advanced Factoring Strategies for Quadratic Expressions Advanced Factoring Strategies for Quadratic Expressions Student Outcomes Students develop strategies for factoring quadratic expressions that are not easily factorable, making use of the structure of the

More information

Lecture 9: Elementary Matrices

Lecture 9: Elementary Matrices Lecture 9: Elementary Matrices Review of Row Reduced Echelon Form Consider the matrix A and the vector b defined as follows: 1 2 1 A b 3 8 5 A common technique to solve linear equations of the form Ax

More information

PHYS133 Lab 7 The HR Diagram

PHYS133 Lab 7 The HR Diagram PHYS133 Lab 7 Goals: Measure brightness of various stars in the Pleiades star cluster in two different wavelength bands. Create an HR diagram based on the data taken. Use the distance modulus to determine

More information

Physics 123 Lab 2: Electric Field Physics 123: Electricity and Magnetism

Physics 123 Lab 2: Electric Field Physics 123: Electricity and Magnetism Physics 123 Lab 2: Electric Field Physics 123: Electricity and Magnetism Instructor: Professor Andrew Boudreaux, Andrew.Boudreaux@wwu.edu Introduction In the previous lab, you saw that two charged objects

More information

Q25: Record the wavelength of each colored line according to the scale given.

Q25: Record the wavelength of each colored line according to the scale given. C. Measurement Errors and Uncertainties The term "error" signifies a deviation of the result from some "true" value. Often in science, we cannot know what the true value is, and we can only determine estimates

More information

Mathematica Project 3

Mathematica Project 3 Mathematica Project 3 Name: Section: Date: On your class s Sakai site, your instructor has placed 5 Mathematica notebooks. Please use the following table to determine which file you should select based

More information

LAST TIME..THE COMMAND LINE

LAST TIME..THE COMMAND LINE LAST TIME..THE COMMAND LINE Maybe slightly to fast.. Finder Applications Utilities Terminal The color can be adjusted and is simply a matter of taste. Per default it is black! Dr. Robert Kofler Introduction

More information

Radiation. Laboratory exercise - Astrophysical Radiation Processes. Magnus Gålfalk Stockholm Observatory 2007

Radiation. Laboratory exercise - Astrophysical Radiation Processes. Magnus Gålfalk Stockholm Observatory 2007 Radiation Laboratory exercise - Astrophysical Radiation Processes Magnus Gålfalk Stockholm Observatory 2007 1 1 Introduction The electric (and magnetic) field pattern from a single charged particle can

More information

Position and Displacement

Position and Displacement Position and Displacement Ch. in your text book Objectives Students will be able to: ) Explain the difference between a scalar and a vector quantity ) Explain the difference between total distance traveled

More information

The Hubble Law & The Structure of the Universe

The Hubble Law & The Structure of the Universe Name: Lab Meeting Date/Time: The Hubble Law & The Structure of the Universe The Hubble Law is a relationship between two quantities the speed of and distance to a galaxy. In order to determine the Hubble

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Objective: Students will gain familiarity with using Excel to record data, display data properly, use built-in formulae to do calculations, and plot and fit data with linear functions.

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 21

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 21 EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 21 21.1 Module Goals In this module, we introduce a family of ideas that are connected to optimization and machine learning,

More information

Chemistry 5021/8021 Computational Chemistry 3/4 Credits Spring Semester 2004 ( Due 4 / 5 / 04 )

Chemistry 5021/8021 Computational Chemistry 3/4 Credits Spring Semester 2004 ( Due 4 / 5 / 04 ) Chemistry 5021/8021 Computational Chemistry 3/4 Credits Spring Semester 2004 ( Due 4 / 5 / 04 ) This problem set will take longer than the last one in the sense that you may need to submit some jobs, leave,

More information

Discrete Structures Proofwriting Checklist

Discrete Structures Proofwriting Checklist CS103 Winter 2019 Discrete Structures Proofwriting Checklist Cynthia Lee Keith Schwarz Now that we re transitioning to writing proofs about discrete structures like binary relations, functions, and graphs,

More information

Math 31 Lesson Plan. Day 5: Intro to Groups. Elizabeth Gillaspy. September 28, 2011

Math 31 Lesson Plan. Day 5: Intro to Groups. Elizabeth Gillaspy. September 28, 2011 Math 31 Lesson Plan Day 5: Intro to Groups Elizabeth Gillaspy September 28, 2011 Supplies needed: Sign in sheet Goals for students: Students will: Improve the clarity of their proof-writing. Gain confidence

More information

Where Is Newton Taking Us? And How Fast?

Where Is Newton Taking Us? And How Fast? Name: Where Is Newton Taking Us? And How Fast? In this activity, you ll use a computer applet to investigate patterns in the way the approximations of Newton s Methods settle down to a solution of the

More information

Uta Bilow, Carsten Bittrich, Constanze Hasterok, Konrad Jende, Michael Kobel, Christian Rudolph, Felix Socher, Julia Woithe

Uta Bilow, Carsten Bittrich, Constanze Hasterok, Konrad Jende, Michael Kobel, Christian Rudolph, Felix Socher, Julia Woithe ATLAS W path Instructions for tutors Version from 2 February 2018 Uta Bilow, Carsten Bittrich, Constanze Hasterok, Konrad Jende, Michael Kobel, Christian Rudolph, Felix Socher, Julia Woithe Technische

More information

Please read this introductory material carefully; it covers topics you might not yet have seen in class.

Please read this introductory material carefully; it covers topics you might not yet have seen in class. b Lab Physics 211 Lab 10 Torque What You Need To Know: Please read this introductory material carefully; it covers topics you might not yet have seen in class. F (a) (b) FIGURE 1 Forces acting on an object

More information

MATH REFRESHER ANSWER SHEET (Note: Only this answer sheet and the following graph page will be evaluated)

MATH REFRESHER ANSWER SHEET (Note: Only this answer sheet and the following graph page will be evaluated) NAME: SCORE: /50 MATH REFRESHER ANSWER SHEET (Note: Only this answer sheet and the following graph page will be evaluated) 1. 23. 2. 24. 3. 25. 4. 26. 5. 27. 6. 28. 7. 29. 8. 30. 9. 31. 10. 32. 11. 33.

More information

Guide to Proofs on Discrete Structures

Guide to Proofs on Discrete Structures CS103 Handout 17 Spring 2018 Guide to Proofs on Discrete Structures In Problem Set One, you got practice with the art of proofwriting in general (as applied to numbers, sets, puzzles, etc.) Problem Set

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated)

Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated) Name: Score: / 50 Math Refresher Answer Sheet (NOTE: Only this answer sheet and the following graph will be evaluated) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. MAKE SURE CALCULATOR

More information